
SMC-TR-94-43 AEROSPACE REPORT NO.
TR-94(4904)-3

THE AEROSPACE
CORPORATION

El Segundo, California

Computer Systems Division
Software System Metrics Approach

July 1994

Prepared by

S. K. HOTING and R. J. COSTELLO
Software Acquisition and Analysis Department
Software Engineering Subdivision
Computer Systems Division
Engineering and Technology Group

Prepared for

SPACE AND MISSILE SYSTEMS CENTER
AIR FORCE MATERIEL COMMAND
2430 E. El Segundo Boulevard
Los Angeles Air Force Base, CA 90245

Contract No. F04701-93-C-0094

Office of The Corporate Chief Engineer

Approved for public release; distribution is unlimited.

This final report was submitted by The Aerospace Corporation, El Segundo, CA 90245-4691,

under Contract No. F04701-93-C-0094 with the Space and Missile Systems Center,

2430 E. El Segundo Boulevard, Los Angeles Air Force Base, CA 90245. It was reviewed and

approved for The Aerospace Corporation by Dr. J. Meltzer, Corporate Chief Engineer. The project

officer is Colonel Charles E. Whited.

This report has been reviewed by the Public Affairs Office (PAS) and is releasable to the

National Technical Information Service (NTIS). At NTIS, it will be available to the general public,

including foreign nations.

This technical report has been reviewed and is approved for publication. Publication of this

report does not constitute Air Force approval of the report's findings or conclusions. It is published

only for the exchange and stimulation of ideas.

FOR THE COMMANDER

^^2^g>^
CHARLES E. WHITED, Colonel, USAF
Deputy Director of Program Management

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 1994
3. REPORT TYPE AND DATES COVERED

4. -.. TITLE AND SUBTITLE

Computer Systems Division Software System Metrics Approach

S. AUTHoR(S)
S. K. Hoting and R. J. Costello

5. FUNDING NUMBERS

F04701-93-C-0094

8. PERFORMING" 0RÜANI2A I'lON
REPORT NUMBER

TR-94(4904)-3

7. PERFORMING ORÜANIZATIÜNI NAME(S) AND ADDRESS(ES)

The Aerospace Corporation
2350 E. El Segundo Blvd.
El Segundo, CA 90245-4691

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Space and Missile Systems Center
Air Force Materiel Command
2430 E. El Segundo Blvd.
Los Angeles Air Force Base, CA 90245

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SMC-TR-94-43

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
Over the decades, the increasing use of software has enabled construction and deployment of ever more capable
space systems for SMC. However, managing, controlling, and participating in software development for such
software-intensive systems is a difficult and error-prone task that is exacerbated by the lack of meaningful data on
key products and processes. Such data should provide visibility into the health and status of the evolving software
system, assist in early identification of current and potential problem areas, and aid in predicting such software
system characteristics as reliability, maintainability, cost, and schedule. Until recently, comprehensive data collection
and analysis methods which treat software as an integral part of a larger system have not been available. This report
introduces a software system metrics approach that has been developed for this purpose. The report discusses the
utility of the approach, key concepts for applying metrics to software-intensive systems, and basic metrics planning
guidelines. It also introduces a set of recommended metrics that cover both the system and the software throughout
the life cycle. A complete description of the metrics approach, associated contractual guidelines, and detailed
descriptions of several of the recommended metrics are the subject of a forthcoming TOR.

15. NUMBER OF PAÜbö

10 pages

14. SUBJECT TERMS

Acquisition Software
Contract Software Engineering
Metrics Software Life Cycle

Software Metrics
Software Process
Systems Engineering

System Life Cycle
System Metrics
Systems Engineering Process

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18
298-102

Contents

1. Introduction 2

2. Metrics Within Large Systems: Three Key Concepts 3

3. Metrics Planning: Basic Guidelines 4

3.1 Primitive and Aggregate Measures 4

3.2 Metrics Descriptions 4

3.3 Metrics Collection/Reporting Tools 4

3.4 Contractor Metrics Plans 5

3.5 Metrics for Many Disciplines 5

4. Recommended Metrics 6

Tables

1. Recommended Metrics for the Software Measurement Program 7

2. Recommended Metrics for the System Measurement Program 8

3. Product/Process Metrics 9

4. Project Resource Metrics 10

5. Progress Metrics 10

Hoting/Costcllo/24-1076

1. Introduction

For today's large, software-intensive systems, the length of the development cycle and the

number and complexity of technical and organizational interfaces create a great deal of uncertainty

and risk. Additionally, for many of these systems, the government's acquisition philosophy dictates

that minimal standards and contractor controls be included in the contract, which results in the

government having little insight into the quality of the developing software-intensive product. It is,

therefore, necessary to be able to objectively evaluate these systems during their development to

determine whether or not they will meet requirements, schedule, and budget; to assist risk

management; and to facilitate corrective and preventive action. Software system metrics can provide

objective information necessary for technical and managerial insight into, control of, and

improvement of the development effort.

Over the last few years, Computer Systems Division personnel have developed a metrics

approach that has been designed for use during the development of large software-intensive systems.

This approach includes an integrated set of system- and software-level metrics recommended for

collection by the development contractor(s) and detailed descriptions of each of these metrics. In

creating this set of recommended metrics and their descriptions, the results of other current metrics

technology efforts were incorporated, as appropriate. The metrics approach also includes suggested

tailorings to selected contractual documentation to ensure that needed metrics information will be

collected and reported to the Government. The metrics approach, recommended contractual

documentation guidelines, and detailed descriptions of several of the recommended metrics are the

subject of an unpublished TOR, "Metrics Guidelines for Software Intensive MCCR Systems."

j Accesion For

i NTIS CRA&I
i DTiC TAB
I Unannounced

Justification

□
D

Hoting/Costcllo/24-1076

2. Metrics Within Large Systems: Three Key Concepts

Three basic concepts recommended for the development of large software-intensive systems

include seamlessness, consistency, and defined expectations. These concepts apply to many aspects of

development, such as supportability and reliability, as well as to metrics. The seamless concept

recognizes that most of our software systems will be developed by a prime and several subcontractors.

This means that all software system products should be consistent among all contractors so that the

exact identity of the developer (i.e., prime or subcontractors) is transparent to the Government. For

similar software, uniform methods and types of tools and uniform training in these methods and tools

are recommended. Thus, in accordance with the concept of seamlessness, all contractors should

collect and report the same metrics information so that a uniform set of metrics information is

reported to the program office.

The consistency concept recognizes that the total software process is an integral part of the

overall systems engineering process and must be dealt with as such throughout the entire life cycle

and across all systems engineering disciplines. The systems engineering process has a system-level

component to the process, which then flows down to hardware- and software-level subprocesses.

Consistency among these levels is necessary. For a large system, metrics should be collected at

several levels: system, segment, and lower levels. Within the lower levels, there are hardware- and

software-specific components. The software-level metrics program has been created to be consistent

with and provide information to the higher level measurements. The higher level process will detail

the methods by which lower level measures are incorporated into higher level measures. Software-

level metrics are defined to be those that deal with software-only components; integrated

hardware/software components are handled by higher level measurements.

The metrics approach includes effective, early communication of Government technical

expectations to the contractor(s) before Engineering and Manufacturing Development (EMD) so that

the contractor(s) can create appropriate plans to meet these expectations. It is recommended that this

be done by: delivering Government expectations documents to the Dem/Val contractors before they

begin developing their EMD planning documentation; participating in Government-contractor

Integrated Product Teams; and providing feedback on early versions of developing planning

documentation. One purpose of the TOR referenced in Section 1 is to provide such metrics

expectations to the contractor.

Hoting/Coslcllo/24-1076

3. Metrics Planning: Basic Guidelines

3.1 Primitive and Aggregate Measures

The purpose of the metrics program is twofold: to gain visibility into the overall health and

status of the evolving software system and to identify at the earliest possible point in the life cycle,

specific problem areas or potential future problems. Both detailed and aggregate measures are

necessary and need to be reported to the Government on a regular basis (often monthly). To assess

overall health and status, cumulative measures should generally be used, whereas for the identification

and resolution of problems, metrics should be reported at a detailed level. Detailed or primitive

information should be reported (or made available) in electronic form for analysis and retention by

the program office.

3.2. Metrics Descriptions
Emphasis is placed on the need for careful definition and description of each metric and its

report formats. Without specific definitions of precisely what is being measured, the measurement

will have little meaning or use. It is, for example, insufficient to report source lines of code (SLOC),

without discussing how that code is being counted. A definition that excludes data declarations and

comments and counts only executable SLOC may easily result in a metric value that is half that

resulting from a definition that includes data declarations and comments. Additionally, without

relatively consistent descriptions of a given metric that is used on several different programs, it will

not be possible to adequately evaluate the usefulness of reported metric data.

3.3 Metrics Collection/Reporting Tools
It is expected that whenever possible, the collection of metrics data will be automated and will

use tools that have been integrated into the contractor's software engineering environment. In

general, it is preferable to use commercial tools when they are available. However, for some metrics it

may be necessary to use contractor-developed tools, either because there are no commercial tools that

calculate the defined metric or because the contractor tool already supports some aspect of the

existing development process and that aspect is being measured. For example, if the contractor has

an existing automated problem report tracking tool, then accumulating metrics on problem reports

may be done most efficiently by modifying the existing tool to collect the defined metric. The same

metrics tools should be used by all development contractors, and to the extent possible, all tools and

methods should be compatible and integrated among all levels of the software system.

Hoting/Costcllo/24-1076

3.4 Contractor Metrics Plans
The contractor's process planning documentation (systems and software level) should include

a detailed and unambiguous definition of each metric and its report formats, or should reference

Government-provided definitions and report formats that the contractor intends to use. The plans

should also include descriptions of methods/tools used to collect, analyze, and report metric

information, as well as a description of management's use of the collected metric information to assess

and improve the software system product and the processes used to generate the product.

3.5 Metrics for Many Disciplines
For software, the metrics program is designed to share information with many software

disciplines (e.g., risk management, Software Quality Assurance, testing, management, and problem

reporting). The contractor's software planning document should discuss the various software

organizations/activities that use metric data. The use of metric information to assess software risk, to

assess and improve software processes, to manage the technical effort, and to identify error-prone

software units should, for example, be explained.

Hoting/Costcllo/24-1076

4. Recommended Metrics

The activities of selecting and defining a set of metrics that effectively covers the software

process can only reach closure in the context of the specific development processes to be used.

However, it is possible to list a general set of software metrics which covers the main activities and

phases of the software life cycle. This set can be tailored and specific metric definitions can be

developed to suit a specific software life cycle and process.

Table 1 shows an example set of metrics that covers the software life cycle. Three categories

of metrics have been identified: progress, resource, and product/process. A collection of metrics

from each of these categories is usually required for comprehensive coverage. Progress metrics

indicate an organization's adherence to schedule. Resource metrics indicate the amount of

development, integration, test, and/or support resources and personnel available and the amount in

use. Product/process metrics are used to measure attributes of the documentation (electronic and/or

paper) and code and characteristics of the activities, methods, practices, and transformations

employed in developing the products. Product and process measurement activities tend to overlap,

which is why they are combined into one category. For example, a high number of product defects

can imply the existence of a problem in the process used to create the product. Also, a dearth of

exposed defects can indicate the existence of a superior product or a deficient inspection process.

While it is necessary to have a software metric set that spans the software life cycle and is

tailored to the process, this is not sufficient for a software effort that will be integrated into a larger

system. Thus, we also recommend use of a set of progress and product/process metrics at the system

level that is integrated and consistent with the software-level metric set, and these metrics are listed in

Table 2. Summary descriptions of each type of metric listed in Tables 1 and 2 appear in Tables 3

through 5.

Hoting/CostcIlo/24-1076

Table 1. Recommended Metrics for the Software Measurement Program

PROGRESS PRODUCT AND PROCESS (continued!

Requirements Progress Complexity

• Structure* • Specification Completeness*
• Information Flow*

Development Progress • Data Structures

• Design Document Completeness

• Design Completeness (CSCs, CSUs) Target Resource Utilization

• Code Completeness (CSCs, CSUs) •CPU

•RAM

Test Progress •DISK

• Test Document Completeness • I/O Channel

• CSU Unit Test Completeness

• CSC Integration Test Completeness Volatility

• CSCI Integration Test Completeness • Requirements*

• Incremental Build (Software Integration) Test Completeness • Design and Code

• Build Definition

Traceabilitv RESOURCE

• Between Requirements*

Staffing • Between Requirements and Design

• Actual versus Planned Level/Turnover Rate • Between Requirements and Test

• Major Software Function

•CSCI Defect Density

• Skill Level • Requirements*

• Design and Code*

Resource Utilization (Develoc-ment. Intearation. and Test

Resources) Fault Densitv

•CPU • Requirements

•RAM • Design and Code*

•DISK

• I/O Channel Test Coverage

• Workstation • Requirements

• Design and Code

Problem Reports/Action Items/Issues PRODUCT AND PROCESS

• Opened/Closed

SiTflffer CSCI. CSC. and CSm • Reason for Closure

• Requirements • Type of Error

• Design • Severity

• Code (for Each Language)* • Criticality

- HOLs, Assembly Languages, and Others (Special Purpose) • Source

- Operating System Command Language •Age

- Data Base Structure Definition Language

- User Interface Construction Language

1 - Expert System Rules

'Definition complete or in progress.

Hoting/Costcllo/24-I076

Table 2. Recommended Metrics for the System Measurement Program

PROGRESS PRODUCT AND PROCESS

Requirements Progress Volatility

• Specification Completeness* • Requirements*

- System/Segment - System/Segment

- Integrated (Hardware and Software) Configuration Item (Cl) - Integrated Cl

- Hardware Configuration Item (HWCI) -HWCI

• Design

Design Progress - System/Segment

• System/Segment Design Document Completeness - Integrated Cl

• Design Completeness -HWCI

- System/Segment

- Integrated Cl Traceajjility

-HWCI • Between Requirements*

- System to Segment

Integration and Test Proaress - Segment to Cl

• Test Documentation Completeness - Cl to Cl (Higher Level to Lower Level)

• Test Completeness • Between Requirements and Design

- System/Segment - System/Segment

- Integrated Cl - Integrated Cl

-HWCI -HWCI
• Between Requirements and Test

- System/Segment

- Integrated Cl

-HWCI

Problem Reports/Action Items/Issues

• Opened/Closed

• Reason for Closure

• Type of Error

• Severity

• Criticality

•Source

•Age

'Definition complete or in progress

Hoting/Costcllo/24-1076

Table 3. Product/Process Metrics

Metric

Volatility

Traceability

Target Resource

Utilization

Problem Report and

Action Item

Size

Complexity

Defect Density

Fault Density

Test Coverage

Summary Description: Overview and Purpose

Indicate changes in products/processes and reasons for change. Provide insight into system maturity and
stability. Aid in predicting future changes to products/processes which are affected by current changes in
products/processes. Essential in interpreting other metrics, e.g., progress, traceability, and completeness

metrics. Recommended for requirements, design and code, and incremental build definitions.

Indicate degree to which development organization maintains accountability for meeting requirements at each

life-cycle stage via a comprehensive requirements allocation and mapping process. Measure relationships
between: (1) requirements and requirements at other specification levels, designs, code/databases, builds,
and tests; and (2) designs and code/databases, builds, and tests. Provide quantitative means for determining
whether all required relationships/dependencies are addressed. Assist in exposing incompletely specified,
insufficiently analyzed, overly specified, and complex areas of system. Essential in interpreting other

metrics, e.g. completeness metrics,
Indicate planned and actual utilization of computer resources for target system. Provide timely feedback on
whether software is being designed and developed to fit resources planned for its operational use. Assist in
preventing adverse effects on cost, schedule, and quality due to inadequate system sizing. Recommended for
CPU, primary memory, mass storage, I/O capacity, and other applicable resources.

Indicate quality of products and process used to create them, and effectiveness of engineering process in
documenting and addressing problems and issues. Consist of counts of problem reports and action items
characterized by source, product, problem type/category, age, severity, criticalfty, status, and primary reason
for closure. Recommended for all products generated from requirements through testing and maintenance

activities. Essential in interpreting other metrics. __
Indicate magnitude of development and maintenance effort. Used in assessing progress, estimating
remaining cost and schedule, identifying technical problems, predicting maintenance cost and effort,
generating historical data for future use, and quantifying the amount of reuse. Recommended for

requirements, designs, and code.

For code, size must include all code that the programmer writes in any language: compiled/assembled
languages, operating system command languages, database definition languages, graphical user interface
builders, and expert system shells. (SLOC is the recommended measurement for several of these
languages.) Classified by: physical and logical statements, statement type, deliverable and non-deliverable
statements, operational and support statements; and new, modified, and reused statements.

Indicate structural characteristics of software system logic flow, information flow, and databases. Useful in
determining whether work has been completed satisfactorily, in planning for code development and test, in
identifying technical problems, and in estimating development, test, and maintenance cost and effort. Several
studies have shown that highly complex software is more likely to contain errors and is more difficult to

maintain than less complex software.
Indicate density^ of product defects that are detected during an inspection or walkthrough. Classified by type,
criticality, and source. Provide early insight into quality, assist in cost/schedule estimation, and indicate
effectiveness of inspection/walkthrough process. Recommended for requirements, designs, and code.
Useful in predicting product/process volatility. Essential in interpreting other metrics, e.g., completeness,

traceability, and volatility metrics
Indicate density1 of product faults that are detected during test execution or post-test analysis. Classified by
type, criticality, and source. Indicate effectiveness of testing process. Assist in determining effectiveness of
other software processes and quality of their products. Recommended for requirements, designs, and code.
Useful in predicting product/process volatility. Essential in interpreting other metrics, e.g., completeness,

traceability, test coverage, and volatility metrics,
Indicate the extent and adequacy of testing. Assist in determining test completeness and test progress. Two
general types of test coverage metrics are Requirements Test Coverage metrics and Design/Code Test
Coverage metrics. Requirements Test Coverage metrics indicate (a) whether or not test documentation is
adequate for requirements verification and (b) whether or not tests fully verify requirements. Design/Code
Test Coverage metrics include counts of how many of the total number of statements, paths, branches, and
interfaces are tested and also upon how varied/realistic are the input data sets used in testing. Together,
these two types of test coverage metrics provide data on product quality and compliance with requirements.

1 Density is the number of defects/faults found divided by the size of the product in which the defect/fault is detected.

Hoting/Costcllo/24-]076

Table 4. Project Resource Metrics

Metric

Staffing

Development, Integration,

and Test Resource

Utilization

Summary Description: Overview and Purpose

Characterize number, discipline (e.g., design, coding, test, configuration management, quality assurance),

skill level (discipline and years of education and experience), and area(s) of assignment (e.g., CSCIs) for

development organization personnel. Indicate planned and unplanned changes in staffing level and

assignments, which can be used to predict whether an effort is adequately staffed to preclude adverse effects

on cost, schedule, and quality.

Indicate planned and actual utilization of computer resources for software development and support activities.

Provide timely feedback on whether planned and available resources for each phase will adequately support

the activities ofthat phase. Assist in preventing adverse effects on cost, schedule, and productivity due to

resource shortages. Recommended for CPU, primary memory, mass storage, I/O capacity, workstations,

and other applicable resources such as COTS software.

Metric

Completeness

Integrated Progress

Table 5. Progress Metrics

Summary Description: Overview and Purpose

Indicate work accomplished versus work remaining in requirements and design specification, coding,

inspection, unit test, integration and test, and system test. Assist in estimating cost and schedule remaining,

in identifying technical problem areas, and in determining readiness to proceed to the next phase. Each class

of completeness indicator (where a class focuses on a single product, e.g., requirements, design, code, or

test) should be used in conjunction with the other measures for that class as indicated in the "Integrated

Progress" metric description below.

Indicate overall progress in requirements, design, code, and test. Encompass measures of completeness,

volatility, traceability, defect and fault density, problem reports/action items, and test coverage as appropriate

for phase and product under consideration. (The high information content of Integrated Progress metrics

lends insight into progress that measures of completeness alone cannot supply.)

Hoting/Costcllo/24-1076 10

